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Abstract

A technique for calculating the pressure profile of a very long and complicated vacuum chamber
is presented. The technique uses the approximation of finite differences  to cast the problem into
a linear form that can readily be solved by matrix manipulations. The procedure is fast and
numerically stable. A program is described that uses this procedure and has a simple, modular
input structure. The program can also calculate pressure profiles for complicated beam pipe
structures like those found in a B factory interaction region design.

INTRODUCTION.

Various methods have been developed to compute the pressure profile of vacuum chambers
used in accelerators and storage rings [1-2]. However, these methods rely on formulas that are
similar to beam transport formalisms and suffer from numerical instabilities when the vacuum
chamber under study gets too long.

The pressure profile in a vacuum chamber where the gas pressure is low enough to ignore
viscosity is governed by the following differential equation over regions in which the
conductance is constant [3]:

c 
d2P
dz2  –  sP  +  q  =  0 (1)

where
P   =   pressure [nTorr]
c   =   specific molecular conductance [m(l/s)]

s   =   specific linear pumping speed [(l/s)/m]

q   =   specific outgas rate [nTorr(l /s)/m].

The general solution of this differential equation (homogeneous + inhomogeneous) is:

P(z)  =  C1 eαz  +  C2 e–αz  +  
q
c (2)

with α   =   √ s
c    .
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BEAM TRANSFER MATRIX FORMALISM.

The above general solution can be cast into a transfer matrix formalism. One then gets the
following matrix equation for each vacuum chamber element of length L.
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or with Q  =  – c 
dP
dz  we have:
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One can then multiply the matrices found for each element of a beam pipe together to get an
overall transfer matrix. Then, given two of the four boundary conditions, one can solve for the
other two boundary conditions. Once the boundary conditions are known at each end of the
pipe, one can select one end of the pipe and use the matrices defined for each pipe element to
calculate the pressure and flow at the ends of every pipe element. The difficulty of the above
formalism is with the exponential terms in the hyperbolic sine and cosine functions. As the
beam pipe under study gets longer, the exponent gets larger, producing large entries in the
transfer matrix. The matrix can not be rescaled to get rid of these large numbers because the last
row of the matrix always remains the same. In order to maintain calculational accuracy,
computer precision has to be increased. Using “QUAD” precision (33 digits of accuracy on a
VAX), one is able to calculate a pressure profile of beam pipes that are no more than about 30
meters long. The basic problem of this formalism is that the overall transfer matrix, as defined
above, is a measure of the correlation between the boundary conditions at one end of a pipe with
the other end. As the length of the pipe grows, this correlation becomes vanishingly small.
Hence, the matrix gets closer and closer to being singular.

FINITE DIFFERENCE METHOD.

Another approach to the problem of calculating pressure profiles is to segment each element of
the beam pipe into small, equal sections of z and recast the derivatives as finite differences.
However, equation (1) is valid only in regions in which the conductance is constant. In order to
account for changes in pipe conductance, we use a slightly more general formula [4]:

d
dz  


 
c

dP
dz   –  sP  +  q  =  0 (3)

This equation insures that the pressure P and the flow Q (= –c dP/dz) are continuous. One then
gets the following finite difference for the double derivative in each small segment of the pipe:
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d
dz  


 
ci 

dPi
dz   =  

ci+1/2 
dPi+1/2

dz   –  ci–1/2

dPi–1 /2

dz

∆z

=  

ci+1/2 
Pi+1 – Pi

∆z
 – ci–1/2 

Pi  – Pi–1

∆z

∆z

=  
ci+1/2Pi+1 + ci–1/2Pi–1 – (ci+1/2+ci–1/2)Pi

∆z2

=  
(ci+1+ci)Pi+1 + (ci+ci–1)Pi–1 – (ci+1+ci–1+2ci)Pi

2∆z2
   . (4)

One then has a series of segments each with the following equation

(ci+1+ci)Pi+1 + (ci+ci–1)Pi–1 – (ci+1+ci–1+2ci)Pi

2∆z2
  –  siPi  +  qi  =  0   .

Combining terms we have

ci + ci–1
2 Pi–1 +  


 
–

ci+1 + ci–1 + 2ci
2  – si∆z2 Pi + 

ci+1 + ci
2 Pi+1  =  – qi∆z2 . (5)

The error in the finite difference approximation is on the order of ∆z2 [5].

Now we need to define boundary conditions at each end of the pipe. We assume that the gas
flow at each end is specified and that the conductance at the boundary is constant. In general,
we have:

Q  =  – c  
dP
dz     so

Qi  =  – ci  
Pi+1/2 – Pi–1/2

∆z
   or

Qi  =  – ci  
Pi+1 – Pi–1

2∆z
(6)

This then allows us to solve for either Pi+1 or Pi–1 in eq. (5) in terms of the flow in the ith
segment. So for the first segment we have (with ci–1 = ci = c1)

 


 
– 

c2 + 3c1
2  –s1∆z2 P1 +  

c2 + 3c1
2 P2 =  –q1∆z2 –2Q1∆z (7)
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and for the last segment we have (with ci+1 = ci = cn)

 
cn–1 + 3cn

2 Pn–1 +  


 
–

cn–1 + 3cn
2  – sn∆z2 Pn=  –qn∆z2 –2Qn∆z . (8)

Now one can form a tridiagonal matrix from these equations.
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– q1∆z2–2Q1∆z

.

– qi∆z2

.

– qn∆z2–2Qn∆z

This system of equations is easily solved using the techniques of Gaussian elimination and back
substitution [6].

THE PROGRAM VACCALC.

A program called VACCALC has been made that utilizes the finite difference method mentioned
above. The program accepts as input a file that lists the characteristics of each beam pipe
element. The unit of length is the meter. The user specifies the segment length (∆z) on the
second line of the input file. All the beam elements must have a length that is a multiple of the
segment length. The program will round the length of beam pipe elements to the nearest multiple
of the segment length. Any element that is shorter than the segment length is set equal to the
segment length. A total of 10,000 segments are allowed for each pipe. This corresponds to a
resolution of 1 mm for a 10 m long pipe or 1 cm for a 100 m long pipe [7]. An example of an
input file is shown below. Figure 3, at the end of the paper, displays the output generated by
VACCALC from this input file.

         1         2         3         4         5
Col. 12345678901234567890123456789012345678901234567890
Line
1 General label for input file.
2    0.001
3 Beam line label.
3    0.0       0.0        1    2       LIN  100
3  PIPE        2.0      50.0      20.0     100.0
4  PUMP        0.1      50.0      20.0    1000.0
5  PIPE        1.5      50.0      20.0     100.0
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6  GAS         0.1      50.0     200.0       0.0
7  PIPE        1.5      50.0      20.0     100.0
8  PUMP        0.1      50.0      20.0    1000.0
9  PIPE        2.0      50.0      20.0     100.0
10  GAS    L    0.1     500.0      20.0       0.0
11  PIPE        2.0      50.0      20.0     100.0
12 ENDPIPE

         1         2         3         4         5
Col. 12345678901234567890123456789012345678901234567890

                ↑            ↑             ↑                    ↑                     ↑                     ↑
          Name   Distributed   Length      Conductance       Outgas            Pumping
           four     or lumped    meters                                     rate                speed
       characters

The first line in the file is a title for the entire input file. The title can be up to 80 characters long.
The next line contains the segment length (∆z). The third line is a title for the following beam
line. This title can also be up to 80 characters long. The fourth line contains the flow
specifications at each end of the following beam line, the node identification number for each
pipe end, the option of plotting the pressure profile with a linear or logarithmic scale, and a
scaling factor that reduces the number of points to be used in the plots. A positive flow means
that gas is coming into the first element of the line and going out of the last element of the line.
The units for incoming and outgoing flow are nTorr(l/s). The default is to plot the pressure
using a linear scale. However, the scale can be changed to logarithmic by inserting “LOG” in
columns 38-40. The scaling factor for the number of points in the plots is the number of
pressure points to skip between plot points (i.e. a number of 10 would mean that every 10th
calculated pressure point is plotted).

Following line four is a list of pipe elements. Each element  can have a name with a maximum
of 4 characters. The element can be either “lumped” or “distributed”. A distributed element is the
default. In this case, the units for conductance, outgas rate and pump speed are: m(l/s),
nTorr(l/s)/m, and (l/s)/m respectively. An element that has an “L” in the 9th column is classified
as a lumped element. In this case, the values of conductance, outgassing, and pump speed are
assumed to be the total values for this element and the units are then l/s, nTorr(l/s), and l/s
respectively. The program then divides the outgassing and pump speed values by the length of
the element and multiplies the conductance by the length to get the specific or distributed values.

The end of a pipe is specified by a line with the word “ENDPIPE”. The program then looks for
the start of another pipe. If the ENDPIPE line is not used to finish off a file, the program
assumes that the user had meant to put one in and continues on as though there had been one.

The node identification numbers are used to connect the ends of separate pipes together. If two
pipe ends have the same node number then the program assumes that these two pipes are
attached at the ends that have the same number. The gas flow at these ends is then considered a
variable and the flow is adjusted through an iterative procedure until the pressure at the end of
each attached pipe is the same. This method automatically insures that the sum of the flows at a
given node is zero. Any number of pipe ends can be joined together at the same node. The
program accepts a maximum of ten different pipes. The two ends of the same pipe can be given
the same node number as well. When this is done, the program will set the pressure and flow at
one end of the pipe equal to the pressure and flow at the other end. This periodic solution is
useful for cases in which the design has a repetitive beam pipe construction (i.e. arc sections).
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AN EXAMPLE.

We can compare results from the program described above with an analytic solution for a simple
case. Figure 1 displays the geometry of a simple beam pipe. The pipe has conductance c1 = 400
m(l/s) for 1 meter of length. Then the conductance changes to c2 = 100 m(l/s) for the next meter
of pipe. The final meter has a conductance that is equal to the first meter and also contains a
distributed pump of 500 (l/s)/m. There is a gas flow of 100 l/s coming into the first section of
the pipe. There is no outgassing from the pipe itself. Figure 2 shows a picture of the output
from a Top Drawer file made by the program. The analytic solution is overlaid on this graph.

s = 500 (l/s)/m
pump

Q = 100 l/s

c = 400 m (l/s)

c = 100 m (l/s)
c = 400 m (l/s)

3 meters

Figure 1. Schematic of the simple beam pipe structure mentioned in the text used to compare the
finite difference procedure with an analytic solution.

Figure 2. Plot of the pressure profile for the beam pipe in figure 1. The solid line is the analytic
solution and the diagonal crosses indicate the values found by the finite difference method. The
program calculated 300 pressure points and displayed 30 points.
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Figure 3. Output from VACCALC for the sample input file discussed in the text.

CONCLUSIONS.

The finite difference method is an effective mathematical procedure for calculating gas pressure
profiles in beam pipes in which the gas is in the free molecular flow regime (viscosity is
negligible). The procedure is numerically stable and pressure profiles from very long beam
pipes can be readily calculated. A computer program is described that implements the finite
difference method outlined in the text. The program is fast and, in addition, can calculate
pressure profiles of complicated beam pipe structures such as those found in B factory designs
where two independent storage rings merge into a common beam pipe at the collision point.
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